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Abstract

We study some geometrical and topological properties of the electric fields created by point charges on Riemannian manifolds
from the viewpoint of the theory of dynamical systems. We provide a thorough description of the structure of the basin boundary
and its connection with the topology of the manifold, and characterize the spaces in which the orbits of the electric field are
geodesics. We also consider symmetries of electric fields on manifolds, particularly on spaces of constant curvature.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The discovery of the inverse-square law for Newtonian and Coulomb interactions is a milestone in the physics
of the seventeenth and eighteenth centuries. The central claim of electrostatic theory [2,24] is that the force per unit
charge experienced by a test particle situated at a point x ∈ R3 subject to the interaction created by a charge of
magnitude q ∈ R is given by the electric vector field

E =
q

4π
x − x0

|x − x0|3
.

Here x0 ∈ R3 is the position of the point particle originating the interaction, and we have chosen Heaviside–Lorentz
units. The same law also holds for the gravitational interaction created by a point mass of magnitude −q in natural
units.

Since then, the study of electric fields generated by N point charges qi (i = 1, . . . , N ) in Euclidean space has
become a classical problem in mathematical physics and potential theory [11]. When the charges are all negative, this
is equivalent to studying the Newtonian gravitational field created by N point masses |qi |, which also coincides with
the first-order approximation to the gravitational field in general relativity [37]. In modern treatments, one usually
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defines the potential function Vp : R3
→ R of a point charge, which is a fundamental solution of the Poisson equation

−1Vp = δp,

and obtains the electric field as E = −∇Vp. Here and in what follows, δp stands for the Dirac distribution centered at
p. The electric field created by several charges can be calculated using the superposition principle.

A natural generalization of this problem is the study of the electric fields generated by point charges on Riemannian
spaces. There is a vast literature on the fundamental solutions of the Poisson equation on manifolds, e.g., on
the existence of positive fundamental solutions [33,9,17,29,30], the study of upper and lower estimates for these
functions [45,31,22], and the connection of these fundamental solutions with the heat kernel [51,32,18].

Nevertheless, the geometric and topological properties of the gradient of the fundamental solutions have received
comparatively little attention. In this paper we shall focus on the study of this aspect using techniques from the
theory of dynamical systems, and we shall show some interesting connections between the orbits of the electric field
(historically known as electric lines or lines of force) and the topology of the space. Thus the concept of electric line,
as Faraday used to visualize the electric fields in the nineteenth century, is profitably extended to the framework of
general Riemannian manifolds.

Let us sketch the organization of this paper. In Section 2 we define the concepts of Li–Tam fundamental solution,
basin boundary, and some other objects of which we make extensive use in the following sections. In Section 3 the
topological structure of the electric lines and the basin boundary in an n-manifold is studied, whereas in Section 4 we
provide stronger results which hold for electric fields on surfaces (n = 2). Section 5 concentrates on the relationship
between electric lines and geodesics. In Section 6 we study the symmetries of the electric field and their application
to spaces of constant curvature, obtaining some exact solutions. Most of the material in Sections 3–6 is new, including
a detailed description of the topological structure of the basin boundary, and a complete characterization of spaces in
which the electric lines are geodesics.

2. Definitions

Let (M, g) be a Riemannian n-manifold without boundary, which we shall assume to be open, complete, analytic,
connected, finitely generated (i.e., all the homotopy groups of M have finite rank), and such that all its ends are
collared. For an arbitrary point p ∈ M , let Vp be a fundamental solution of the Poisson equation

−1Vp = δp, (1)

1 standing for the Laplace–Beltrami operator. Here δp denotes the Dirac distribution centered at p.
Li and Tam [29] have provided a geometric construction of solutions to this equation for any Riemannian manifold

(M, g). Their technique consists in considering a monotone sequence of compact domains p ∈ M1 ⊂ M2 ⊂ · · ·

which exhaust M , and studying the Dirichlet problem

−1V (k)
p = δp in Mk

V (k)
p = 0 on ∂Mk

in each Mk . Then a solution to Eq. (1) can be obtained as

Vp(x) = lim
k→∞

V (k)
p (x)− ck

for some sequence of non-negative constants (ck). The construction guarantees that Vp is analytic in M − p, and that
it is decreasing in the sense that for all R > 0

sup
M−Bp(R)

Vp = max
∂Bp(R)

Vp,

where Bp(R) = {x ∈ M : dist(x, p) < R}. These two properties are key to most of our work in the following
sections. Furthermore, the map v : M × M → R given by v(x, y) = Vy(x) is symmetric, and analytic in
{(x, y) ∈ M × M : x 6= y}.

When inf Vp = −∞, Vp is called a non-positive Green function, or an Evans function. This condition only depends
on the end structure of (M, g), and when it holds (M, g) is called parabolic. When inf Vp > −∞, one says that
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Vp is a (positive) Green function, and (M, g) is called hyperbolic. There is an extensive literature on geometric
conditions characterizing hyperbolic and parabolic spaces, e.g., [9,17,31,22]. When the manifold is hyperbolic, Li
and Tam’s construction provides the unique minimal positive fundamental solution. Otherwise, uniqueness is not
usually guaranteed, except for some particular cases [29].

A configuration of point charges on M is a set C = {(qi , pi )}
N
i=1, where N is the number of charges, and

(qi , pi ) ∈ (R − 0)× M represents the magnitude and position of the i-th charge of the configuration.

Definition 1. The electric field E created by the charge configuration C is defined as E = −∇V , where the potential
function V is given by

V =

N∑
i=1

qi Vpi ,

Vp = v(·, p), and v : M × M → R stands for a fixed solution to Eq. (1) obtained via Li and Tam’s procedure.

Obviously the electric field is an analytic, divergence-free vector field on M −
⋃N

i=1 pi satisfying Maxwell’s
equations on the manifold. Moreover, its critical set has codimension greater than 1 as a consequence of the
Cauchy–Kowalewski theorem. The positions of the charges are clearly the only singularities of the electric field
(i.e., limx→pi |E(x)| = ∞). Observe that the definition of the electric field does not require (M, g) to be hyperbolic.
In fact, since we will be interested in the properties of the orbits of E (which from now on will be called electric
lines), the hyperbolicity or parabolicity of the manifold will not be especially relevant. Actually, recall that even the
Euclidean plane (R2, δ) is a parabolic space. One should also note that Li and Tam’s solutions to Eq. (1) are physically
admissible in both cases, since they are symmetric and decreasing.

Let C be a configuration of negative point charges. Two key objects in the study of the portrait of the electric lines
in the large are the attracting basin and the basin boundary of C, which we shall now define.

Definition 2. The (attracting) basin of the charge (qi , pi ) is

Di = {x ∈ M : ω(x) = pi },

where ω(x) is the ω-limit of the orbit of E passing through x . The (attracting) basin of the configuration C is defined
as D =

⋃N
i=1 Di .

Definition 3. The basin boundary of the configuration C is F = ∂D.

Thus the basin Di consists of the points that are dragged into the i-th charge along the flow of E . Being a boundary,
F has codimension at least 1, and the electric lines passing through some point of F do not fall into any charge. In
Section 3 we will provide a detailed characterization of these sets.

For reasons that will become apparent in Sections 3 and 4, it is technically convenient to introduce a
compactification of the manifold M and of the basin boundary F as follows. Since M is finitely generated and all its
m ends are collared, there exist [23] a closed topological n-manifold K and a finite subset {Ki }

m
i=1 of pairwise disjoint

compact submanifolds of K such that M is homeomorphic to K −
⋃

Ki . We define the collared-end compactification
of M as M̂ = K −

⋃
int (Ki ) = M ∪ E(M), and its compactified boundary as F̂ = F ∪ E(M). Here and in what

follows we use the same notation for a subset of M and its homeomorphic image in M̂ , and we denote the set of
ends of M by E(M) = {Ei }, where Ei = Ki − int (Ki ). One should also note that any topological submanifold of
M̂ not containing any end naturally inherits a Riemannian structure, but neither F nor F̂ is generally a topological
submanifold.

Although we shall be primarily interested in point charges, we will also consider extended charge distributions,
which are given by piecewise smooth functions ρ : M → R, possibly with compact support.

Definition 4. The electric field E created by a charge distribution ρ is E = −∇V , where the potential function
V : M → R is defined as

V (x) =

∫
M
v(x, y)ρ(y)dy

when the integral exists, v being a fixed Li–Tam solution to Eq. (1).
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One should observe that −∆V = ρ.

3. Topological structure of the electric lines

We shall now study the topology of the orbits of the electric field created by a configuration C of point charges.
The structure of the electric field is not well understood as a dynamical system, either locally (e.g., the portrait near
the critical points and singularities) or in its global aspects. Since we will be mainly interested in the topological
properties of the basin boundary, in this section we assume that the charges are all negative.

First one should recall that the analytical local behavior of E near a singularity pi is well known [13], and in fact
can be easily obtained by direct integration. Given a chart (x i ) : U ⊂ M → Rn centered at pi , one can construct the
expression

E =
qi cn

√
Grn−1

∂r + W (2)

in U . Hereafter r2
=

∑n
i=1(x

i )2,
√

G is the volume density function (i.e., G is the determinant of the metric in the
coordinates (x i )), and c−1

n denotes the area of the round (n − 1)-sphere. Besides, the vector field W is divergence-free
and analytic in U . Refs. [33,29] ensure that a certain W exists such that this local solution can be globally extended.
In U , one can define a desingularized electric field as

Ẽ = rn E ∼ −r∂r + O(r2). (3)

In addition to Ẽ , we shall also make use of the vector field in U

X =
1

1 + |Ẽ |2
Ẽ . (4)

Note that Ẽ and X are analytic, and possess the same orbits as E . Furthermore, X is a complete vector field in U .
When (x i ) are normal Riemann coordinates, r is the geodesic distance to pi , and the asymptotic behavior of the

metric is

G ∼ 1 + O(r2) (5)

as r tends to zero. Besides, the singularities of E are Newtonian in the sense that |E | ∼ r1−n
+ O(r3−n).

In the following proposition we gather some fundamental properties of the electric lines. Properties (1) and (2)
provide a quite detailed description of the electric lines near the charges up to (local) Cω diffeomorphism, whereas
Properties (3), (4), (5) and (6) convey information on the portrait of the electric lines in the large.

Proposition 1. For the electric field E created by the charge configuration C, the following statements hold:

(1) pi is a local attractor, and its neighboring equipotential sets V −1(c) (c ∈ R) are topological spheres.
(2) Let A be an analytic subset of M. Then, in a neighborhood of pi , the electric trajectories, which emanate from

pi , either stay in A or intersect it in a finite number of points. Hence all the orbits have well defined tangent at pi .
(3) The electric trajectories point inward at infinity (i.e., the ends of M are local maxima of the potential).
(4) The equipotential sets are compact analytic sets of codimension 1. In particular, they have no endpoints.
(5) There exist no invariant closed sets without charge and with non-empty interior.
(6) E does not have any periodic orbits.

Proof. (1) Since the singularity pi is an isolated minimum of the potential (limx→pi V (x) = −∞), its neighboring
equipotential sets are topological spheres, proving the claim.

(2) Since the linearization of Ẽ is proportional to r∂r =
∑

xi∂i , the eigenvalues of its derivative are all equal, and
thus Siegel’s (C, ν) condition is satisfied [1]. Hence Ẽ is locally Cω-conjugate to its linear part. As the claim holds
for the orbits of the linearization of Ẽ , and E and Ẽ have the same orbits in a neighborhood of the singular point,
the electric lines must also intersect any given analytic set a finite number of times. This implies the existence of
a well defined tangent; cf. Ref. [28].
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(3) Li and Tam’s construction ensures that V is non-decreasing, tending to a definite limit on each end (possibly +∞).
Thus each end of M is a local maximum, and in fact its “neighboring” equipotential sets are tubes whenever V
has no critical points outside some compact set.

(4) By analyticity of V , V −1(c) is an analytic set, and hence closed. As a consequence of Property (3), the
equipotential sets must be bounded, proving compactness. Sullivan’s theorem [50] implies that V −1(c) has no
endpoints. To prove that the codimension is 1, let us assume there exists a point x ∈ V −1(c) such that the
connected set W = V −1(c) ∩ U has codimension greater than 1, U being a sufficiently small neighborhood of x .
Then the implicit function theorem shows that W belongs to the critical set of V . Since V 6= c in U − W , then the
equipotential sets of V in U are tubes around W , and hence W is a local extremum, contradicting the harmonicity
of V .

(5) Let S be a closed invariant set without charge. Since the ends of the manifold are local maxima, V must attain its
minimum on S regardless of whether S is compact or not. S being invariant, the flow of X must possess a local
attractor at the latter minimum, contradicting the harmonicity of V |S .

(6) Being a gradient field, E cannot have periodic orbits. �

Remark 1. Property (2) states that the orbits of E are non-oscillating (i.e., E satisfies the analytic finiteness
conjecture [28]) near its singular points. For n > 2, it is not known whether the orbits of E (more generally, of
the gradient of an analytic function) are also non-oscillating at its critical points.

Let us now focus on the topology of the attracting basins and their boundary, which encloses the homological
properties of the manifold. First we shall prove that each basin is diffeomorphic to Rn .

Proposition 2. Di is an open, invariant submanifold of M diffeomorphic to Rn .

Proof. First, it should be observed that Di deform retracts to pi and that Di is invariant, so its homotopy groups
are trivial and Di is homeomorphic either to Rn or to a Whitehead-type manifold [14]. In proving that it is indeed
homeomorphic to Rn , Property (1) in Proposition 1 implies that there exists a topological n-disc B = {x ∈ Di :

V (x) < c}. Let h : M → R be a smooth function, positive in M −
⋃

pi , which vanishes as rn at each singularity pi , r
standing for the geodesic distance to pi . Let φt be the flow of the complete vector field Y = h(1 + h2

|E |
2)−1 E . Then

Di =
⋃

∞

j=1 φ j (B), and hence by Ref. [6] Di must be homeomorphic to Rn . By uniqueness of analytic differentiable
structures on a manifold [44], the fact that Di is an analytic submanifold now implies that it is Cω-diffeomorphic to
Rn . �

Theorem 1. The following statements hold:
(1) The boundary F is a closed invariant set, and F̂ is compact.
(2) M is the disjoint copy of D and F .
(3) The boundary is non-empty whenever M is not homeomorphic to Rn or there is more than one charge.
(4) The α-limit of an electric line contained in F is either a critical point or an end of the manifold, and its

ω-limit must be a critical point. In particular, F consists of the union of the critical points of V and their stable
components.

Proof. (1) D being open, F = D − D must be closed, so that F̂ is compact. F is clearly invariant since D and D are.
(2) Let U be an open subset of the closed set M − D, which we can assume to be invariant without loss of

generality. Then U is a closed invariant set without charge, with non-empty interior if U 6= ∅. By Property
(5) of Proposition 1, M − D has empty interior, and therefore M = D. Hence M − D = D − D = F .

(3) By Property (2), M = D ∪ F , D being homeomorphic to N disjoint copies of Rn . When N 6= 1, D is not
connected, and cannot be homeomorphic to M . When M 6∼= Rn , F cannot be empty either even if N = 1.

(4) Let U be the union of the critical set of E and its stable components. U is clearly invariant. To prove that F is
contained in U , let O ⊂ F be an orbit of E . Its ω-limit cannot be a charge, since it lies on F , and O cannot escape
to infinity, since the field points inward in a neighborhood of each end of M . E being an analytic gradient field
(except at the charges), this implies that the ω-limit of O must be a critical point [34]. The same argument shows
that its α-limit must be either an end or another critical point.

To prove that U is also contained in F , let O be an orbit in U . Its α-limit cannot be a charge, since a charge
is a repeller, so it must be either an end or another critical point. In any case, O is not contained in any basin of
attraction, so O ⊂ F . �
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Remark 2. Theorem 1 suggests that it can be frequently convenient to think of the boundary as if it were composed of
two (not necessarily disjoint) closed sets of different nature, as we shall now outline. Since M − F is homeomorphic
to N disjoint copies of Rn , one can patch these copies together to obtain a disc and find a closed subset Ft ⊂ F so
that M −Ft is homeomorphic to Rn . Ft then encloses the topological structure of M . The set Fs = F − Ft now takes
into account the fact that N charges are present, separating the n-disc M − Ft into N disjoint basins. When N = 1,
one can consistently take Fs = ∅, and when M ∼= Rn one can consider Ft = ∅. The decomposition F = Ft ∪ Fs is
generally not unique.

Theorem 1 also shows that the boundary is composed of electric lines joining an end with a critical point, or
connecting two critical points (saddle connection). Example 2 in Section 4 shows that saddle connections can actually
appear, even in the simple case of just one charge on a surface.

One should observe that both F and F̂ can possess rather bad local behavior. However, their structure cannot
be extremely pathological. In the following proposition we prove that they cannot be the boundary of Wada basins,
contrary to what happens in many other physically relevant dynamical systems; cf. Refs. [26,47] and references
therein. In particular, this implies that the points of F (or F̂) which separate more that two attracting basins constitute
a nowhere dense subset.

Proposition 3. Neither F nor F̂ possesses the property of Wada.

Proof. We prove the statement only for F , since for F̂ the proof is completely analogous. Let us suppose that a
connected component F0 of F possesses the property of Wada. Then it is an indecomposable continuum [26], and
hence F0 is not locally connected at any point. However, F0 must contain the stable component of a critical point of
V , and this stable component is arc-connected, contradicting the fact that F0 is an indecomposable continuum. �

Since removing the boundaryF from M simply yields N disjoint copies of Rn , one should expect to recover certain
homological and homotopical information about M by analyzing the topological structure of F . In the following
theorem we show how this goal can be achieved. As a by-product, we will obtain additional results which complement
Theorem 1 and Proposition 3 by characterizing the boundary from the viewpoint of shape theory [5,10]. One should
observe that the (possibly) bad local properties of the compactified boundary can prevent F̂ from being homeomorphic
to a simplicial complex, so Čech homology must be used instead of singular homology. For the same reason, it is
preferable to use the coarser notion of shape groups rather than the homotopy groups of F̂ to obtain information about
the topology of M̂ . One should recall [5,10] that the singular homology (resp. homotopy) groups and Čech homology
(resp. shape) groups are isomorphic for ANRs, e.g. topological manifolds.

Theorem 2. For each k < n − 1, the k-th homotopy group πk(M̂) (resp. homology group Hk(M̂)) of the compactified
space is isomorphic to the k-th shape group π̌k(F̂) (resp. Čech homology group Ȟk(F̂)) of the compactified basin
boundary. Furthermore, there exists a monomorphism πn−1(M̂) → π̌n−1(F̂), and the groups Hn−1(M̂)⊕ ZN−1 and
Ȟn−1(F̂) are isomorphic.

Proof. Let h : M → R be any smooth function, positive in M −
⋃

pi , vanishing at each singularity pi as rn (r being
the geodesic distance to pi ), and such that h|E | tends to zero at each end. Consider the complete smooth vector field
on M

Y = hE,

and let φt be its flow. By construction, φt naturally gives rise to a differentiable flow in M̂ − E(M). Since Y vanishes
on E(M), one can extend it to a continuous flow φ̃t on M̂ by setting φ̃t |E(M) = idE(M).

Consider N n-discs Bi ⊂ M̂ − F̂ (i = 1, . . . , N ) such that pi ∈ Bi for each i , and let S =
⋃

Bi be their union.
For each j ∈ N, let us define the open set S j = φ̃− j (S), which is obviously homeomorphic to the disjoint union of
N n-discs, and its complement F j = M̂ − S j . Since a closed disc with an interior point removed deform retracts
onto its boundary, there exists a retraction R j : M̂ −

⋃
pi → F j homotopic (when composed with the inclusion

F j → M̂ −
⋃

pi ) to the identity map.
Since Bi ⊂ Di and pi is a global attractor in Di , it follows that S j ⊂ S j+1 and

⋃
S j = D, so

⋂
F j = F̂ .

Furthermore, F j deform retracts onto F j+1 by construction. Under these conditions a theorem of Borsuk’s [4] ensures
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that F̂ is a FANR, and the trivial homotopy of R j shows that the fundamental sequence R = {R j , M̂ −
⋃

pi → F̂}M̂
is a strong fundamental deformation retraction [5].

Let us now concentrate on the homotopy groups of M̂ and (Borsuk’s) shape groups of F̂ . Let x0 and s0 be
arbitrary points of F̂ and Sk , respectively, and let us consider maps γ : (Sk, s0) → (M̂, x0) defining elements
[γ ] ∈ πk(M̂, x0). For all k < n, γ (Sk) has empty interior, so one can assume without loss of generality that pi 6∈ γ (Sk)

(i = 1, . . . , N ). Now one can set γ j = R j ◦ γ and consider the approximative map γ = {γ j , (Sk, s0) → (F̂, x0)}M̂ .
The maps [γ j ] 7→ [γ ] clearly extend to monomorphisms R#

j : πk(F j , x0) → πk(M̂, x0), and hence yield a

monomorphism R#
: π̌k(F̂, x0) → π̌k(M̂, x0). Note that π̌k(M̂, x0) ≈ πk(M̂, x0) since M̂ is an ANR, and that

πk(M̂, x0) ≈ πk(M̂, x1) for every x0, x1 ∈ M̂ .
Let i j : F j → M̂ be the inclusion map. To prove that the kernel of R#

j is zero when k ≤ n − 2 for all j , and
therefore R#

j and R# are isomorphisms, one should start by observing that R j ◦ i j ◦ β = β for all β : Sk
→ F j .

Now let β : Sk
→ F j belong to the kernel of R#

j , so that γ = i j ◦ β is null homotopic in M̂ . Therefore, γ can

be extended [48] to a map γ̃ : Bk+1
→ M̂ , Bk+1 standing for the (k + 1)-disc. Thus there exists an extension

β̃ = R j ◦ γ̃ : Bk+1
→ F̂ of β, which implies that β is also null homotopic in F j .

Let us now prove the statement on the homology groups. First, let BN denote the disjoint union of N n-discs and
ḂN the disjoint union of N punctured n-discs. Since F̂ is a strong fundamental deformation retract of M̂ −

⋃
pi , they

have the same shape [5], and thus Ȟk(M̂, F̂) ≈ Ȟk(M̂, M̂ −
⋃

pi ) for all k. By the excision axiom, Ȟ(M̂, F̂) is then
isomorphic to Ȟk(M̂ − F̂, M̂ − (F̂ ∪

⋃
pi )). Therefore from Proposition 2 it follows that

Ȟk(M̂, F̂) ≈ Ȟk(BN , ḂN ) ≈

{
0 if k < n
ZN if k = n.

Hence the exact sequence 0 → Ȟk(F̂) → Ȟk(M̂) → 0 shows that Ȟk(F̂) ≈ Ȟk(M̂) for k < n − 1, whereas the
exact sequence 0 → Z → ZN

→ Ȟn−1(F̂) → Ȟn−1(M̂) → 0 proves that Ȟn−1(F̂) ≈ Ȟn−1(M̂)⊕ ZN−1. Since M̂
is an ANR, Ȟk(M̂) ≈ Hk(M̂), and the claim follows. �

Corollary 1. F is either empty or non-compact. Furthermore, F̂ is a connected FANR, and has the shape of a finite
polyhedron in standard position.

Proof. In the proof of Theorem 2 it was proved that F̂ is a FANR. Connectedness stems from the fact that F =
⋂

F j

and each F j is connected. By Ref. [19], it also implies that F̂ has the shape of a finite polyhedron in standard
position. Furthermore, as F̂ = F ∪ E(M) is connected, then either F is empty or E(M) ∩F 6= ∅ in the compactified
manifold. �

As an interesting physical consequence, one should note that in principle an experimentalist could use this theorem
to gain some insight into the topological structure of the physical space M by detecting the points at which the electric
field generated by a point charge vanishes and following the directions in which the electric lines enter the critical
points.

4. Electric fields on surfaces

In this section we will study the topology of the basin boundary on surfaces, where the results of the previous
section can be strengthened. A useful elementary property in dimension 2 is the conformal invariance of Li and Tam’s
fundamental solutions. In this section, M will always denote a 2-manifold.

Lemma 1. If (M, g) and (M, g̃) are conformally isometric, they admit the same Li–Tam fundamental solution.

Proof. Let g̃ = λg, where λ : M → R+. Then it is well known that the Laplacian and delta distribution in (M, g)
and (M, g̃) are related by ∆̃ = λ−11 and δ̃p = λ−1δp. Therefore the equation −1Vp = δp is conformally invariant,
and the lemma follows. �

It is easy to observe that a closed n-manifold does not admit any fundamental solutions, since they would be non-
constant and would necessarily attain their minimum in M − p, contradicting their harmonicity in M − p. Lemma 1
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provides a simple proof of the following related fact, which had already been approached [54] using the theory of
holomorphic functions.

Proposition 4. The electric field generated by the charge configuration C on a closed 2-manifold exists if and only if∑
qi = 0.

Proof. The “only if” part is elementary, since

−

N∑
i=1

qi =

∫
M
1V dx =

∫
∂M

∂V
∂n

dσ = 0

as M is closed.
Let us now concentrate on the “if” part. Without loss of generality, one can restrict to the case C =

{(1, p), (−1, p′)}, since the general case follows from linear superposition by decomposing the original configuration
into neutral pairs. Let M̃ = M − p′, which is not a complete manifold with the induced metric. From Ref. [38] it
follows that there exists a smooth conformal factor λ : M → R+ such that (M̃, λg) is complete. Let Ṽ be a Li–Tam
fundamental solution, which must tend to −∞ at p′ since it has a well defined limit at the only end p′ of M̃ , and
otherwise it would be extendable to a fundamental solution on a closed manifold. It can however be extended to a
singular function V : M → R so that V ∈ Cω(M − p − p′). By Ref. [13], p′ is a Newtonian singularity of V , which
must satisfy −1V = δp + qδp′ . As the sum of the charges must vanish, q = −1. �

Remark 3. The conformal factor λ must tend to +∞ at p′. This follows from a theorem of Gordon [16], asserting
that a Riemannian manifold is complete if and only if there exists a proper function f whose gradient is bounded in
norm. Thus, if ∇̃ and | · |M̃ denote the gradient and norm in (M̃, λg), there exists a proper function f and a constant
c such that c ≥ |∇̃ f |

2
M̃

= λ−1
|∇ f |

2 in M − p′. Since (M̃, g) is not complete, there does not exist a constant c′

satisfying |∇ f |
2

= λ|∇̃ f |
2
M̃

≤ c′, so one must have limx→p′ λ(x) = +∞.

Note that the proposition above does not claim the electric field to be independent of the order in which the neutral
pairs of charges are taken. One could also be tempted to consider that negative charges are equivalent to “holes” in
the manifold. Proposition 4 shows that negative charges in a closed manifold can indeed be identified with holes, in
a certain sense. In open manifolds, however, this identification is generally not possible, as the following example
shows.

Example 1. Let us consider the electric field generated by two point charges C = {(−1, x−), (1, x+)}, where
x− = (0, 0) and x+ = (−1, 0), in the Euclidean plane. The standard Li–Tam potential is given by

V (x) =
1

2π
(log |x | − log |x − x+|). (6)

Let Φ : R2
− x− → R × S1 be the diffeomorphism which maps the punctured plane into the cylinder by defining

z = log |x | and taking θ ∈ S1 as the polar angle determined by x . The induced metric is ds2
= e2z(dz2

+ dθ2),
and is conformally equivalent to the flat metric. By Lemma 1 it follows that the induced potential Ṽ = Φ∗V is a
fundamental solution in the flat cylinder, but it is not of Li–Tam type. To see this, note that limz→−∞ Ṽ (z, θ) = −∞

whereas limz→+∞ Ṽ (z, θ) = 0, so that one end is parabolic the other one is hyperbolic. However, a criterion appearing
in Ref. [31] shows that both ends must be parabolic for any Li–Tam fundamental solution. Hence, negative charges
and holes cannot be generally regarded as equivalent concepts.

In the following proposition we concentrate on the local and global topological structure of the basin boundary,
which can be described more thoroughly for surfaces than it can be in arbitrary dimension; cf. Section 3. In the rest of
this section, M is an open surface, which can be topologically characterized by the number of handles g and of holes
h according to Richards’ theorem [43]. Furthermore, C again denotes a configuration of negative point charges. One
should also observe that the critical set of V in a 2-manifold must be composed of isolated points.

Proposition 5. Let x be a critical point of V . Then x is a topological saddle with 2m half-branches, where m ≥ 2 is
the degree of the lowest homogeneous term in the Taylor expansion of V near x.
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Proof. Let (r, θ) be polar Riemann coordinates centered at x . One can make the expansion V (r, θ) = crm f (θ) +

O(rm+1), where m ≥ 2, as x is a critical point of V . By harmonicity, one can set f (θ) = cos mθ without loss of
generality. The equation ẋ = −∇V can be blown up into

ṙ = mr cos mθ + O(r2), (7)

θ̇ = −m sin mθ + O(r). (8)

Then the blown-up critical points are given by r = 0, θk = kπ/m, where k = 1, . . . , 2m. The linearization of the
blown-up field at the point (0, θk) is given by diag(±m,∓m), and therefore they are hyperbolic saddles. Thus the
original field possesses a topological saddle at x , whose 2m half-branches are tangent at x with angle θk . �

Corollary 2. In a sufficiently small neighborhood U of the critical point x, F ∩ U is composed of m half-branches.
In particular, F has no endpoints and is triangulable.

Proof. By Theorem 1, F is composed of the critical points of V and their stable components. From the change of
sign of ṙ in Eq. (7) at the blown-up critical points, it follows that the stable and unstable half-branches alternate,
and hence one has m stable and m unstable half-branches. If F had an endpoint, it would be a critical point x of V .
However, m ≥ 2 stable half-branches fall into x , so x cannot be an endpoint. Furthermore, sinceF has pure dimension
1 (provided it is non-empty) and each half-branch is an electric line and hence a differentiable submanifold, F is
triangulable. �

From Corollary 2 the configuration C in M naturally yields a decomposition of the compactified manifold M̂ into
0-cells xi , h j , 1-cells γi and 2-cells Di . Here and in what follows, xi represent the critical points of V , and h j the ends
(holes) of the manifold. Furthermore, γi denote the stable electric lines associated with the critical points, and Di is
the basin of the i-th charge. The boundary of a k-cell is composed of cells of dimension up to k − 1.

Remark 4. In dimension 2 an enlightening visual picture of F can be obtained by representing M̂ as a 2g-gon with
identified faces. Let us consider the simplest case, N = 1. As a consequence of Theorem 2, F must contain 2g
homotopically independent loops, which can be realized as the border of the 2g-gon. Furthermore, F cannot contain
any other loop, since it would separate regions without charge and thus contradict Proposition 1. These 2g loops
constitute a closed subset of F which we could call a loop boundary. The rest of the boundary must be constituted by
curves which do not destroy the contractibility of the interior of the 2g-gon when removed from it. Thus F is made
of 2g independent loops, and of non-periodic curves with an endpoint lying at the border of the 2g-gon and the other
one being a compactified hole of M .

We shall now study upper and lower bounds for the number of critical points of V which rest upon the local analysis
performed in Proposition 5. We shall denote by NZ the number of critical points xi of V , and by mi the number of
stable half-branches at xi . We also define the branch number NB =

∑
i mi .

Theorem 3. If NZ is finite, the following bounds for the number of critical points and the branch number hold:

max{1 − δN ,1δg,0δh,1, 2g − h − N + 2} ≤ NZ ≤ 2g + h + N − 2, 4g ≤ NB ≤ 2(2g + h + N − 2),

where δi, j stands for the Kronecker delta. Furthermore, the upper bound for NZ is attained if and only if all the
critical points are hyperbolic.

Proof. Since the index of a saddle with 2m half-branches is 1 − m [40], Proposition 5 implies that the index of xi is
upper bounded by −1, and equals −1 if and only if xi is hyperbolic.

As a consequence of Richards’ theorem [43], the compactified manifold M̂ can be endowed with a differentiable
structure, which is unique as M̂ is a 2-manifold [21]. It is therefore easy to regularize the induced electric field on M̂
so that the charges pi and the holes hi become critical points of the regularized smooth vector field Ê . Now one can
apply Hopf’s index theorem [40] to obtain

χ(M̂) =

N∑
i=1

indÊ (pi )+

h∑
i=1

indÊ (hi )+

NZ∑
i=1

indÊ (xi ) = N + h +

NZ∑
i=1

indÊ (xi ),
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where χ(M̂) = 2 − 2g is the Euler characteristic of M̂ , we denote the points in M and their projection in M̂ by the
same symbol, and we have used that the index of the attractors pi and the repellers hi is 1. Since indÊ (xi ) ≤ −1, the
upper bound for NZ follows.

The lower bound for NB can be obtained by realizing that F contains at least the 2g loops of the loop boundary,
and therefore there are at least 4g stable half-branches. The upper bound for NB can be derived from the one for NZ
and the equation above:

2g + h + N − 2 = −

NZ∑
i=1

indÊ (xi ) =

NZ∑
i=1

(mi − 1) = NB − NZ .

Finally, this equation and the lower bound for NB show that

NZ = 2 − N − 2g − h + NB ≥ 2g − h − N + 2.

Furthermore, NZ > 0 whenever the boundary is non-empty, as will be the case when M 6∼= R2 (g > 0 or h > 1) or
N > 1. �

Corollary 3. If NZ is finite, the potential generated by one charge in the plane with g handles has exactly 2g critical
points, which are all hyperbolic. Moreover, F̂ coincides with the loop boundary.

Proof. By Theorem 3, V has exactly 2g critical points and they are hyperbolic. To prove that F̂ coincides with the
loop boundary, by Remark 4 it is enough to show that the compactified hole h1 lies on the loop boundary. Let us
assume that g > 0, since the case g = 0 is trivial, and suppose that h1 lies outside the loop boundary. Remark 4
shows that one can continue the electric line starting at h1 until it reaches a critical point x1 in the loop boundary,
possibly after passing over other critical points of V . As each critical point has two stable half-branches, only one
curve of F̂ can fall into h1, and there are a finite number of critical points, the other stable half-branch of x1 can be
continued through other stable half-branches to obtain a cycle γ contained in the loop boundary. Since γ is made of
stable components,

0 <
∫
γ

dV = 0,

and hence we reach a contradiction. �

One should note that, as Remark 2 would suggest, the upper bound for NZ , 2g + h + N − 2, is the sum of the first
Betti number b1(M) = 2g + h − 1, which takes into account the non-trivial topology of M , and N − 1, corresponding
to the maximum number of components which would separate N 2-discs in the plane. In particular, the upper bound
would be saturated by a Morse–Smale electric field. An interesting open question is that of proving (or disproving) that
the electric fields on surfaces are generically Morse–Smale. When M is diffeomorphic to R2, (M, g) is conformally
isometric [49] to either the Euclidean plane or the hyperbolic 2-space, and Lemma 1 can be used to prove that the
electric field is generally Morse–Smale in this case. Should this property hold for an arbitrary surface, then the electric
field, and hence the boundary, would be structurally stable in the generic case [27], and the upper bound for NZ would
be sharp.

Now we present an example showing that the electric field need not be Morse–Smale even when N = 1, as it can
have saddle connections.

Example 2. Let T be the 2-torus {(z, w) ∈ C2
: |z| = |w| = 1}, with external equator {z = 1} and internal equator

{z = −1}, and consider the collinear points p = (1, 1), x1 = (−1, 1), x2 = (−1,−1) and h = (1,−1). Let (M, g)
be the surface T − h, endowed with a complete conformally flat metric, and consider a negative charge at p. Let us
define the diffeomorphisms of M given by e(z, w) = (z, w), a1(z, w) = (z−1, w), a2(z, w) = (z, w−1), which are
obviously isometries of M when endowed with the (incomplete) flat metric. Furthermore, the groups G1 = {e, a1}

and G2 = {e, a2} are symmetries of the charge configuration. By Lemma 1 and Corollary 5 in Section 6, the curves
{z = ±1} and {w = ±1} are invariant under the electric field, and therefore it can be easily seen using Theorem 3 that
the points x1 and x2 are the only critical points, which are hyperbolic, and that the invariant set {z = −1} constitutes
a saddle connection.
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5. Geodesic behavior

When N = 1, the results of Section 3 show that the topological properties of the boundary F closely resemble
those of the cut locus of a Riemannian manifold. This is particularly remarkable since the cut locus is a subanalytic
set [7], whereas generally the basin boundary is not even known to be triangulable. We shall therefore devote this
section to analyzing the relationship between the geodesics and the electric lines on the one hand, and the cut locus
and the boundary on the other. We always assume that the charge configuration is C = {(−1, p)} (N = 1).

First let us introduce some standard notation [41]. By C(p) ⊂ M and Σp ⊂ Tp M we shall denote the cut locus
and the segment domain at p, respectively, and expp : Tp M → M will stand for the exponential map at p. It is well
known that C(p) has dimension at most n − 1, and that expp diffeomorphically maps the interior of the closed n-disc
Σp into M − C(p).

Proposition 6. There exists an analytic diffeomorphism D → M −C(p) mapping the electric lines into the geodesics
starting at p.

Proof. By Proposition 2, one can take an analytic global chart (x i ) in D and define the complete vector field X as in
Eq. (4). Let φt be its flow, which is analytic. In Proposition 1 it has been proved that there exist a neighborhood U of
p and an analytic diffeomorphism Ψ : U → Bn which maps the electric lines into straight lines passing through the
origin. Here Bn

⊂ Rn denotes the unit ball and one can assume that U is saturated by V , so that ∂U = V −1(c).
Consider a singular foliation of U defined by λ, where λ : U → [0,+∞) is the onto analytic function defined as

λ(x) = (e−V (x)
− e−c)−1. Clearly the leaves of the foliation are those of V , i.e., topological spheres centered at p,

and λ is a Lyapunov function of the vector field X .
Let Φ : U → D be the analytic map Φ(x) = φ−λ(x)x . Obviously Φ leaves the electric lines invariant, and is

bijective and bicontinuous since λ decreases along the orbits of X . Its inverse, which has the form Φ−1(x) = φg(x)x ,
where g(x) = λ(y) and x = Φ(y), is also analytic, and Φ defines an analytic diffeomorphism.

Now one can construct an analytic diffeomorphism ψ : Bn
→ int Σp which preserves the straight lines passing

through the origin simply by dragging along the radial directions. Since the restriction expp : int Σp → M − C(p) is
also an analytic diffeomorphism, expp ◦ψ ◦ Ψ ◦ Φ−1

: D → M − C(p) provides the desired diffeomorphism. �

Remark 5. Generally, this diffeomorphism cannot be extended to a homeomorphism M → M mapping the electric
lines into the geodesics globally. In fact, recall that the cut locus of a surface can be homeomorphic to a half-line
in a neighborhood of one of its points (e.g., in the paraboloid, when p is not the vertex), while in Corollary 2 we
proved that the basin boundary of a surface cannot have any endpoints. Therefore, C(p) and F are not generally
homeomorphic via a homeomorphism M → M .

Example 3. Generally speaking, the basin boundary is not contained in C(p) either. To see this, let us consider the
cylinder S1

× R with the metric given in local coordinates by ds2
= f (θ)(dθ2

+ dz2), where −∞ < z < +∞,
−π < θ < π , and f is positive and 2π -periodic. In these coordinates, one can assume that the position p of the
charge is z = 0, θ = 0.

The geodesic equation reads

d
dt
( f (θ)ż) = 0,

2
d
dt

(
f (θ)θ̇

)
− ż2 f ′(θ) = 0,

where t denotes the arc length. The geodesics contained in the invariant set {z = 0} starting at p can be easily obtained
by the quadrature∫ θ

0
f (θ)dθ = ct,

c being a constant. Thus the intersection C(p)∩ {z = 0} is given by (θ0, 0), θ0 being the solution, unique modulo 2π ,
to ∫ θ0

0
f (θ)dθ =

∫ 2π−θ0

0
f (θ)dθ.
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Example 6 in Section 6 and Lemma 1 show that in the conformally flat cylinder the basin boundary is given by
F = {θ = π}. Since θ0 6= π generally, this establishes that F 6⊂ C(p).

Theorem 2 and Remark 5 show that the electric lines arise as curves of a new kind on a Riemannian manifold which
do not generally coincide with geodesics and of intrinsic geometrical and topological interest. They define in a natural
way a decomposition of the manifold into the basin boundaryF (of dimension at most n−1 and containing most of the
homotopical and homological information of M), and Nn-cells bounded by F . This decomposition is not generally
homeomorphic to the one obtained from the cut locus [55,42] and, unlike a vector field given by geodesics emanating
from one point [36], it induces non-trivial dynamics on the basin boundary. It is remarkable that this decomposition,
which is standard in the sense of Doyle and Hocking [12], is given by a simple vector field whose origin is rooted in
classical physics.

In the following theorem we characterize in which situations the electric lines are geodesics, and thus the two kinds
of lines coincide. Of course, analyticity implies that the electric lines are globally geodesic whenever they are locally,
and the contact order of geodesics and electric lines at p is at least 2; cf. Eqs. (2) and (5). Recall that a space (M, g)
is harmonic [3] with respect to p if the volume density function in normal Riemann coordinates centered at p, which
we denote by

√
G, only depends on the geodesic distance to p.

Theorem 4. The electric lines emanating from p are geodesics if and only if the cut locus C(p) is empty and the
space is harmonic with respect to p.

Proof. We begin with the “if” part. Let (x i ) be normal Riemann coordinates (NRC) centered at p, which are globally
defined since C(p) = ∅, and let (r, θ) ∈ R+

× Sn−1 be polar Riemann coordinates (PRC), i.e., the spherical
coordinates associated with (x i ). In PRC, the metric reads ds2

= dr2
+ gi j (r, θ)dθ i dθ j . The determinant of the

metric in these coordinates is G̃ = r2n−2G(r)σ (θ), where
√

G(r) is the volume density function in NRC and
√
σ(θ)

is the volume density function of the round unit (n − 1)-sphere in spherical coordinates. It can be readily verified that
in this case the potential

V = cn

∫
dr

√
G(r)rn−1

(9)

is a Li–Tam solution to the equation 1V = δp, proving the claim.
Let us now address the converse implication. One can prove that C(p) is contained in F , since E(x) = 0 for all

x ∈ C(p). To see this, note that at each x in C(p), either two geodesics intersect or the derivative D expp vanishes.
In the first case, E must vanish because two different orbits cannot intersect. In the second case, let us suppose that x
is not a critical point of E . Then there exists a smooth reparametrization of the electric line γ in a neighborhood of x
so that one has γ̇ = D expp ∂r = 0, contradicting E(x) 6= 0.

If C(p) 6= ∅, C(p) is strictly contained in F , since by Theorem 1 F also contains the stable components of the
critical set of E , which must be non-empty because E is divergence-free. As M − C(p) deform retracts to p by
dragging along the geodesics, which are also electric lines by hypothesis, the ω-limit of the non-empty set F − C(p)
is p, contradicting its definition. Hence C(p) = ∅.

To prove that G only depends on r , let us take Riemann coordinates, which are globally defined. By hypothesis,
the electric field must have the form E = f (r, θ)∂r . As it is divergence-free in M − p,

divE =
1√
G̃

∂

∂r

[√
G̃ f (r, θ)

]
= 0,

so that f (r, θ) = G̃−1/2 f1(θ). Since E is irrotational,

dE[ =
∂

∂θ i

[
G̃−1/2 f1(θ)

]
dθ i

∧ dr = 0,

and hence G̃ = f1(θ)
2 f2(r) and G = g1(θ)g2(r). As G = 1 at p (x i

= 0), one must have 1 = g1(θ)g2(0), which
implies that g1(θ) is a constant and proves the assertion. �

Eq. (9) had already appeared in the literature within the context of local fundamental solutions in harmonic
spaces [46], i.e., manifolds which are harmonic with respect to every point. However, the full characterization given
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above, which includes spaces in which the only electric lines assumed to be geodesic are those which emanate from
a given point p, and the relationship between the cut locus and the existence of global radial fundamental solutions
seems to have escaped notice. Let us now discuss a couple of relevant examples.

Example 4. Important examples of harmonic spaces with empty cut locus are the non-compact two-point
homogeneous spaces [3] Rn and H j (K), where the field K is either the reals R, the complex numbers C, the
quaternions Q or the octonions O. Theorem 4 implies that the electric field in the hyperbolic space H j (K) is given by

E = −
c jν

sinh jν−1 r coshν−1 r
∂r ,

where ν is the real dimension of the field K. Note that in these spaces the electric lines generated by a point charge are
always geodesics, just as in Euclidean space. In particular, the classification of harmonic manifolds up to dimension
4 [52] implies that the only spaces of dimension ≤ 4 possessing this property are Rl , Hl

≡ Hl(R),Hk(C) andH1(Q),
with 1 ≤ l ≤ 4 and k = 1, 2. Obviously there are harmonic spaces whose cut locus is non-empty and therefore their
electric lines are not (locally) geodesic, e.g., the flat cylinder; cf. Example 6.

Example 5. Rotationally symmetric spaces with respect to p diffeomorphic to Rn (e.g., the paraboloid, if p is the
vertex) satisfy the hypotheses of Theorem 4. The metric has the form ds2

= f (R)2dR2
+ R2dΩ2, where dΩ2

is the metric of the round unit (n − 1)-sphere and one can assume f (0) = 1. The electric field is now given by
E = −cn R1−n f (R)∂R . Cheng and Yau’s necessary condition for the existence of a positive Green function [9] is
in this case also sufficient, since

∫
volp(r)−1rdr behaves at infinity as the potential because r =

∫
f (R)dR and

volp(r) = c−1
n

∫
f (R)Rn−1dR. Note that it is also true that electric fields on asymptotically flat spaces satisfying the

hypotheses of Theorem 4 have Euclidean behavior at infinity.

As is well known in potential theory, the fact that the electric lines generated by a point charge in Euclidean space
are straight implies that the electric field generated by a charge distribution is radial if and only if the latter distribution
has spherical symmetry. We shall extend this property to arbitrary manifolds, and thus provide another characterization
of spaces whose electric lines emanating from p are geodesics.

Let ρ : M → R be a piecewise smooth charge distribution which does not vanish identically. The potential
generated by ρ will be denoted by V , and the one generated by the negative unit charge at p by Vp. We say that two
piecewise smooth functions f, g : M → R agree fiberwise if d f ∧ dg = 0, which implies that they define the same
foliation at the points where f and g are regular.

Theorem 5. The electric lines emanating from p are geodesics if and only if V and Vp agree fiberwise for one, and
therefore all, ρ agreeing fiberwise with Vp.

Proof. First we prove the direct implication. The exponential map at p is globally defined by Theorem 4, and ρ
depends only on r since it agrees fiberwise with Vp. Let us define the function Q(r) =

∫ r
0 ρ(r)r

n−1G(r)1/2dr . Then
it can be readily verified that the potential

V (r) = −

∫
Q(r)

√
G(r)rn−1

dr

constitutes a Li–Tam solution to the equation −1V = ρ.
Now we prove the converse implication. Let U be a sufficiently small domain in suppρ − p where dVp 6= 0. Then

one can write V = f1(Vp) and ρ = f2(Vp) in U , and Poisson’s equation reads

f2(Vp) = f ′′

1 (Vp)|∇Vp|
2,

so Vp is a transnormal function [53] in U , and therefore throughout its analyticity domain M − p. The equipotential
sets {Vp = c} near p are topological spheres by Proposition 1, and parallel by the transnormality condition
|∇Vp|

2
= f (Vp). Since Vp is regular in a punctured neighborhood of p, its focal set is p, and therefore the

equipotential sets of Vp near p must be geodesic spheres. This implies that the electric lines are geodesic locally,
and hence globally. �
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Theorems 4 and 5 show that harmonic spaces (with respect to p) with empty cut locus reproduce the physically
most relevant aspects of potential theory in Euclidean spaces. It is remarkable that the appropriate generalization
of charge distributions whose field can be computed as if generated by a point charge leads not only to spherically
symmetric spaces but also to the wider class of harmonic manifolds with empty cut locus.

6. Symmetries and spaces of constant curvature

In Eq. (9) we obtained a closed expression for the potential assuming that the electric lines were geodesics.
Generally such a closed expression cannot be found, and in this case symmetries provide a useful means of extracting
geometrical information about the orbits of the electric field.

In the following proposition we prove that there exists a Li–Tam fundamental solution which inherits the isometries
of the space. From a physical viewpoint, it is natural to choose this kind of fundamental solution to define the potential
function, and therefore we shall always assume that such a choice has been made.

Proposition 7. Let G be a closed Lie subgroup of isometries of (M, g). Then there exists a Li–Tam fundamental
solution v : M × M → R such that v(ax, ay) = v(x, y) for all a ∈ G.

Proof. Let v0 : M × M → R be any Li–Tam fundamental solution, and let us define an action of G on M × M given
by a · (x, y) = (x, ay). Let U ⊂ M be an open n-disc on which G acts freely, and define W = M × U . Since G is
closed, the orbit space W/G can be realized [39] as an embedded submanifold of W transverse to the orbits of G. For
each y ∈ U one can find ay ∈ G and ŷ ∈ U/G such that y = ay ŷ, and such a decomposition is unique. Hence one
can define a function v : W → R as v(x, y) = v0(a−1

y x, ŷ). This implies that v(ax, ay) = v(x, y) whenever y and
ay belong to U . Furthermore, since the Laplacian commutes with isometries, v satisfies that −∆xv(x, y) = δy(x)
in W . As the solutions of this equation are analytic for x 6= y, there exists an extension v : M × M → R of v,
analytic in {(x, y) ∈ M × M : x 6= y}, which by analyticity must be a Li–Tam fundamental solution satisfying
v(ax, ay) = v(x, y). �

Corollary 4. Let ρ be a charge distribution which is invariant under a closed Lie subgroup of isometries G. Then
both V and E are also invariant under G.

Proof. To prove that V is invariant under G, observe that

V (ax) =

∫
M
v(ax, y)ρ(y)dy =

∫
M
v(x, y)ρ(ay)day = V (x)

by Proposition 7. Furthermore, since a is an isometry, (a∗∇V )(x) = (∇V )(ax). �

Remark 6. It can be easily seen that these results also hold for finite discrete subgroups of isometries, and when
the charge distribution is substituted by a configuration of point charges. It also applies for conformal isometries
(i.e., (a∗g)(x) = cg(ax), where g is the metric tensor, a ∈ G, and c is a constant) when one replaces “invariant” by
“conformally invariant”.

Corollary 5. Let (M, g) be a Riemannian 2-manifold conformally isometric to (M, g̃), and let G be a subgroup of
isometries of (M, g̃) as in Proposition 7 or Remark 6. Let us suppose that G is a symmetry group of a configuration
of point charges C. Then G is a symmetry group of V and a generalized symmetry group of E.

Proof. By Lemma 1 (M, g) and (M, g̃) admit the same Li–Tam fundamental solution ṽ, which inherits the isometry
subgroup G from (M, g̃). Therefore the potential V =

∑
qi ṽ(·, pi ) is also G-invariant. By the conformal symmetry

g̃ = λg, one can write (a∗E)(x) = λ(ax)λ(x)−1 E(x) for each a ∈ G, and hence G maps orbits of E into orbits
of E . �

It can be readily verified that, conversely, an isometry which leaves the potential invariant is also a symmetry of the
charge distribution. Observe that, as a consequence of the Corollary 4 and Remark 6, the boundaryF must be invariant
under the closed subgroup G of isometries which preserve the charge configuration. Therefore,F is saturated by orbits
of G.
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Corollary 4 provides another method of proving thatF is empty when (M, g) is rotationally symmetric with respect
to p and C = {(−1, p)} (note that this can also be proved using Theorem 4). In particular, the electric field does not
have any critical points. To prove this result, observe that M must be diffeomorphic to Rn , and that spherical symmetry
leaves the charge at p invariant, so by Corollary 4 F would be composed of (n − 1)-spheres, which would separate
off a closed region without charge, contradicting Proposition 1.

A useful observation concerning homogeneous spaces that stems from Proposition 7 is that in these manifolds it
suffices to calculate one potential function Vp to obtain the potential generated by any configuration of point charges
C. Actually, since the isometry group is transitive in homogeneous spaces, there exist isometries ai such that p = ai pi ,
and one can express the potential as V (x) =

∑
qi Vp(ai x). This can be applied, e.g., to hyperbolic space, where the

expression for Vp was given in Example 4 in Section 5.
Symmetries of vector fields frequently give rise to first integrals and invariant sets, which in turn can be used

sometimes to obtain exact solutions to non-trivial problems by reducing the solution of a simpler problem in higher
dimension to an invariant subset; cf. e.g. [25,8]. Nevertheless, this approach does not seem to yield significant results
in the study of electric fields on manifolds for the reasons that we shall shortly discuss.

For instance, let us assume that S is an analytic submanifold of M invariant under the electric field E , and let
j : S → M be an embedding. Let us suppose that the first N ′ charges of a configuration C = {(qi , pi )}

N
i=1 lie

on S. It is natural to ask whether the induced vector field Ẽ = j∗E is also an electric field on (S, g̃) generated
by some configuration of charges C′

= {(q ′

i , pi )}
N ′

i=1, where possibly q ′

i 6= qi . We do not necessarily assume either
that g̃ is the inherited metric j∗g. Generally speaking, the answer is clearly negative, since actually Ẽ need not
be either divergence-free or a gradient field. The usual method for inducing a divergence-free vector field on S is
due to Godbillon [15]. When there exists a submersive first integral I : U → R, U being some neighborhood
of S, Godbillon’s theorem ensures that Ẽ is divergence-free in S −

⋃N ′

i=1 pi with respect to the volume form
Ω̃ = |∇ I |−2i∇ I Ω , where Ω stands for the volume element in (M, g). Note that Ω̃ coincides with the volume element
corresponding to (S, g̃) if one sets g̃ = |∇ I |−2/(n−1) j∗g. However, since the charges are either attractors or repellers,
there cannot exist any local first integrals differentiable at pi , and thus the metric g̃ is not smooth.

The difficulties which arise can be easily understood with the following simple example. In dimension 2 the electric
field is locally Hamiltonian, and a local first integral always exists. In the complex plane (C, dzdz), for example, the
first integral of the electric field generated by a configuration C = {qi , zi } can be explicitly computed to yield

I (z, z) =
Re

∏
(z − zi )

qi

Im
∏
(z − zi )qi

.

Taking C = {(−1, 1), (1,−1)} and setting z = x + iy, the first integral reads I (x, y) =
1
2 y−1(1 − x2

− y2), so the
unit circle S = I −1(0) is invariant under the electric field. Nevertheless, I is not even continuous on the line {y = 0},
so the metric |∇ I |−2 j∗g = csc2 θdθ2 is singular on S at the charges.

Proposition 7 provides an effective method for obtaining closed expressions for the potential function in certain
spaces. Let Ṽ be the potential created by a point charge situated at p̃ in a Riemannian manifold (M̃, g̃), and let G be a
discrete group of isometries of (M̃, g̃) whose action on M̃ is free and properly discontinuous. Then the manifold M =

M̃/G inherits the complete analytic metric g = π∗g̃, where the analytic map π : M̃ → M denotes the projection.
Let us suppose that there exists a sequence (ca) such that the sum

∑
a∈G[Ṽ (ax̃) − ca] is finite for each x̃ ∈ M̃ .

Then this sum takes the same value on each fiber π−1(x) and the analytic function V : M → R defined by

V (x) =

∑
a∈G

[Ṽ (ax̃)− ca]

is independent of the choice of x̃ ∈ π−1(x), and a Li–Tam potential created by a point charge situated at p = π p̃.
This approach is particularly convenient for studying the electric field on spaces of constant curvature, which can

be obtained [20] by quotienting a space form Rn,Hn or Sn by a discrete subgroup G of its isometry group, namely,
E(n),O(n, 1) or O(n + 1) respectively. We shall illustrate this method with some examples.

Example 6. Let us consider the Euclidean plane R2, with Cartesian coordinates −∞ < z, θ < +∞, and the action
of Z on R2 given by Θn(z, θ) = (z, θ + 2nπ). In these coordinates, the metric of R2 takes the form ds2

= dz2
+ dθ2,

and the potential created by a negative unit charge situated at (0, 0) is given by Ṽ =
1

4π log(z2
+ θ2).
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Let us consider the flat cylinder R × S1
= R2/Z, with coordinates −∞ < z < +∞, −π < θ < π , and metric

ds2
= dz2

+ dθ2. One can explicitly evaluate the potential of a negative unit charge situated at (0, 0) as

V =
1

4π

∑
n∈Z

log[z2
+ (θ + 2πn)2] − log(1 + 4π2n2)

=
1

4π
log(cosh z − cos θ)+ const.

Obviously V tends to +∞ at both ends since they are parabolic. The electric field is given by

E = −
sinh z∂z + sin θ∂θ
4π(cosh z − cos θ)

,

and tends to ±
1

4π ∂z as z tends to ∓∞. The only critical point is (0, π), and the circle {z = 0} is invariant. The basin
boundary is given by the invariant line {θ = π}.

An analogous but more involved computation can be performed for other flat cylinders. For instance, the potential
in R3

× S1, with coordinates (x, θ), is given by

V = −
sinh |x |

32π2|x |(cosh |x | − cos θ)
.

Again the only critical point is (0, π), and the boundary is the invariant plane {θ = π}.

It is clear that this approach also works for a configuration of several charges on compact manifolds, provided that
all the charges sum to zero as required by the argument in Proposition 4.

Example 7. Let us consider the Euclidean plane, with coordinates x , and the additive action of Z2 on R2. Let us
define the symmetric sum∑

n∈Z2

= lim
k→∞

k∑
n1=−k

k∑
n2=−k

,

and consider an induced potential of the form

V = −
1

2π

∑
n∈Z2

N∑
i=1

qi log |x − xi + n| − cn,

created by a configuration C = {(qi , xi )}.
We consider first the case in which the charges in the configuration sum to zero, which without loss of generality

can be reduced to C = {(−1, 0), (1,−x0)}. Since

V = −
1

2π

∑
n∈Z2

log
|x + x0 + n|

|x + n|
− cn,

and

log
|x + x0 + n|

|x + n|
∼

x0 · (x + n)
|x + n|2

+

1
2 |x0|

2
|x + n|

2
− [x0 · (x + n)]2

|x + n|4
+ O(|n|

−3),

the choice

cn =
|x0 · n|

2

1 + |n|4
−

|x0|
2

2 + 2|n|2

renders the sum for V uniformly convergent on compact sets not containing the charges, and thus leads to the potential
created by two charges on the flat torus.

When the charges do not sum to zero, the potential cannot exist on any closed manifold by the elementary argument
outlined in Proposition 4. This can be easily seen when considering potentials of the above form and the simplest
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configuration C = {(−1, 0)}. As

log |x + n| ∼ log |n| +
x · n
|n|2

+

1
2 |n|

2
|x |

2
− (x · n)2

|n|4
+ O(|n|

−3),

the best possible choice for cn would be

cn = log |n| +
(x0 · n)2 −

1
2 |n|

2
|x0|

2

|n|4
+ O(|n|

−3)

for some fixed x0 ∈ R2, which does not prevent the sum for V from diverging logarithmically but at x = x0.

The same procedure can be applied to the space forms of positive or negative curvature. From the hyperbolic plane,
whose fundamental solution was given in Example 4, one can obtain the electric field on the torus with g handles and
negative curvature. From the round sphere, the potential created by two charges of magnitude ±1 situated at antipodal
points can be computed to yield

V = −cn

∫
cscn−1 rdr,

where r denotes the geodesic distance to the positive charge, and can be used to study the electric field on spherical
spaces [56].

7. Open problems

A major unanswered question in the study of electric fields on n-manifolds (n ≥ 3) is that of proving or disproving
that the basin boundary in (Rn, g) is always empty, which is equivalent to V having no critical points. This problem is
physically relevant since (Rn, g) has a natural interpretation in Electrostatics as an anisotropic Euclidean space with
dielectric tensor εi j

= (det g)1/2gi j [24].
In fact, we conjecture that the following stronger result also holds. Let NZ < ∞ be the number of critical points

of V in a space (M, g), V being the potential created by a point charge, and let bk(M) be the k-th Betti number of M .
Then we conjecture that

NZ ≤

n∑
k=1

bk(M), (10)

and the upper bound is saturated if and only if all the critical points are hyperbolic. In Section 4 it was proved that this
conjecture holds when n = 2, but the proof relies on the classification of surfaces and on the particular properties of
harmonic functions on 2-manifolds, and does not extend to higher dimensions.

Furthermore, we also believe that the electric field is generically Morse–Smale for an arbitrary number of charges,
and hence structurally stable [35], so that the generic number of critical points of V is a topological invariant when
only one charge is present.

A natural extension of this work is the study of the geometrical and topological properties of the dynamics of
particles in a static electric field on Riemannian manifolds, and of coupled electric and magnetic fields which evolve
in time according to the laws of special relativity.
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